بعد از دوران یونان باستان ، تئوری اعداد در قرن شانزدهم و هفدهم با زحمات ویتViete ، باشه دو مزیریاکBachet de Meziriac ، و بخصوص فرما Fermat دوباره مورد توجه قرار گرفت . در قرن هجدهم اولرEuler و لاگرانژ Lagrangeبه قضیه پرداختند و در همین مواقع لژاندر Legendre و گاوسGauss به آن تعبیر علمی بخشیدند . در 1801 گاوس در مقاله ی Disquisitiones Arithmeticæ حساب تئوری اعداد مدرن را پایه گذاری کرد .

چبیشفChebyshev کران هایی برای تعداد اعداد اول بین یک بازه ارائه داد . ریمان Riemann اظهار کرد که حد تعداد اعداد اول از یک عدد داده شده تجاوز نمی کند . (قضیه ی عدد اول prime number theory. ) و آنالیز مختلط complex analysis را در تئوری تابع زتای ریمان Riemann zeta function گنجاند و فرمول صریح تئوری اعداد اول explicit formulae of prime number theory را از صفر های آن نتیجه گرفت .
تئوری همنهشتی congruences از Disquisitiones گاوس شروع شد . او علامت گذاری زیر را پیشنهاد کرد :
(mod(c

چبیشف در سال 1847 به زبان روسی کاری را در این زمینه منتشر کرد و سره Serret آن را در فرانسه عمومی کرد . بجای خلاصه کردن کارهای قبلی ، لوژاندر قانون تقابل درجه ی دوم law of quadratic reciprocity را گذاشت . این قانون از استقراء induction کشف شد و قبلاً اولر آن را مطرح کرده بود. لوژاندر در تئوری اعداد Théorie des Nombres برای حالت های خاص آن را ثابت کرد . جدا از کارهای اولر و لوژاندر ، گاوس این قانون را در سال 1795 کشف کرد و اولین کسی بود که یک اثبات کلی ارائه داد . کوشی Cauchy ؛ دیریکله Dirichlet ( که مقاله ی Vorlesungen über Zahlentheorie او یک مقاله ی کلاسیک است) ؛ ژاکوبی Jacobi که علامت ژاکوبی Jacobi symbol را معرفی کرد ؛ لیوویلLiouville ؛ زلرZeller ؛ آیزنشتین Eisenstein؛ کومرKummer و کرونکر Kronecker نیز در این زمینه کارهایی کرده اند . این تئوری تقابل درجه دوم و سوم cubic and biquadratic reciprocity را شامل می شود. نمایش اعداد با صورت درجه ی دوم دوتایی binary quadratic forms مدیون گاوس است . کوشی ، پوانسو Poinsot ، لبگ Lebesgue و بخصوص هرمیت Hermite به موضوع چیزهایی افزوده اند . آیزنشتاین Eisenstein در تئوری صورت های سه گانه پیشتاز است ، و تئوری فرمها theory of forms به طور کلی مدیون او و اچ. اسمیتH. J. S. Smith است. اسمیت دسته بندی کاملی از صورتهای سه گانه انجام داد و تحقیقات گاوس در مورد صورت های درجه ی دوم حقیقی به فرمهای مختلط افزود . جستجوهایی در مورد نمایش اعداد به صورت جمع 4، 5 ،6 ، 7 ، 8 ، مربع توسط آیزنشتاین ادامه یافت و اسمیت آن را کامل کرد


دید کلی

نظریه مجموعه‌ها ، سنگ اساسی بنای ریاضیات جدید است. تعریفهای دقیق جمیع مفاهیم ریاضی ، مبتنی بر نظریه مجموعه‌هاست. گذشته از این روشهای استنتاج ریاضی ، با استفاده از ترکیبی از استدلالهای منطقی و مجموعه- نظری تنظیم شده‌اند. زبان نظریه مجموعه‌ها ، زبان مشترکی است که ریاضیدانان منطقی در سراسر دنیا با آن صحبت کرده و آن را درک می‌کنند. چنان که اگر کسی بخواهد پیشرفتی در ریاضیات عالی یا کاربردهای عملی آن داشته باشد، باید مفاهیم اساسی و نتایج نظریه مجموعه‌ها و زبانی که در آن بیان شده‌اند، آشنا شود.

موسس نظریه مجموعه‌ها جرج کانتور (1845- 1918) است. زمانی که کانتور مفاهیم و استدلالهای جدید و متهورانه خود را منتشر کرد، اهمیت آنها تنها توسط تعداد کمی از ریاضیدانان بزرگ درک شد. اما این نظریه در توسعه بعدی‌اش ، تقریبا در تمام شاخه‌های ریاضیات نفوذ کرد و تاثیری عمیق بر گسترش آنها داشت. بطوری که حتی باعث تغییر نظریه‌های تثبیت شده گردید. در واقع توسعه بعضی از نظامهای ریاضی ، از قبیل توپولوژی ، اساسا به ابزار نظریه مجموعه‌ها وابسته است. از اینها مهمتر ، نظریه مجموعه‌ها نیرویی متحد کننده بدست داد که به تمام شاخه‌های ریاضیات مبنای مشترک و مفاهیم آنها ، وضوح و دقتی تازه بخشیده است.

مجموعه

هنگامی که می‌خواهیم با مجموعه‌های آشنا شویم می‌توانیم آنها را به سه صورت مورد بررسی قرار دهیم. مطالعه مجموعه‌ها به کلی و آشنایی عمومی با آنها که هر کس که می‌خواهد وارد علوم پایه را مورد مطالعه قرار دهد باید این آشنایی را کسب کند، مطالعه مجموعه‌ها به طور طبیعی و مطالعه مجموعه‌ها به صورت اصل موضوعی. در نظریه مجموعه‌ها دو واژه طبیعی و اصل موضوعی دو واژه متضاد هم می‌باشند. در این قسمت با مفهوم کلی مجموعه‌ آشنا شده و اطلاعاتی عمومی در مورد آن کسب می‌کنیم.

نظریه طبیعی مجموعه‌ها (Naive set theory)

مطالعه مجموعه‌ها به صورتی طبیعی به عنوان نظریه طبیعی مجموعه‌ها Naive set theory است و این همان نظریه‌ای است که در آغاز پیدایش نظریه مجموعه‌ها توسط جرج کانتور مطرح گردید. اما در ادامه این نظریه درگیر اشکالات و پارادکس‌هایی شد، همچون پارادکس راسل، و به این ترتیب نیاز به یک تغییر در نظریه مجموعه ها احساس شد و به این ترتیب ریاضیدانانی چون ارنست تسرملو سعی کردند نظریه مجموعه‌ها را در قالب یک دستگاه اصل موضوعی ارایه کنند که این به ایجاد نظریه اصل موضوعی مجموعه‌ها یا Axiomatic set theory انجامید.

نظریه اصل موضوعی مجموعه‌ها (Axiomatic set theory)

در این نظریه، مجموعه به عنوان یک مفهوم اولیه در نظر گرفته شده و با چند اصل موضوع به برسی خواص مجموعه‌ها پرداخته می‌شود. اصول مورد بررسی این نظریه عبارتند از:
    • اصل موضوع گسترش
    • اصل موضوع تصریح
    • اصل موضوع مجموعه تهی
    • اصل موضوع زوج سازی
    • اصل موضوع اجتماع
    • اصل موضوع مجموعه توانی
    • اصل موضوع انتخاب
    • اصل موضوع گسترش
    • اصل موضوع جایگزین

مفهوم مجموعه

عبارت مجموعه در کاربرد محاوره‌ای ، معمولا به معنای دسته‌ای از اشیا در نظر گرفته شده است که به مفهومی وابسته به یکدیگر یا شبیه هم باشند. اگر شی a عنصری از مجموعه s می‌نویسیم (a متعلق به s) و در صورتی که a عنصری از s نباشد، می‌نویسیم a متعلق به s نیست. فرض می‌کنیم s مجموعه‌ای از عناصر باشد اگر s تنها شامل یک عنصر باشد آنگاه s را تک عنصری می‌نامیم. و اگر شامل دو عنصر متمایز باشد، آنگاه s را جفت نامرتب می‌نامیم.

مفهوم زیرمجموعه

T، زیر مجموعه هر مجموعه s است هر گاه جمع عناصر T متعلق به S باشد، این موضوع را با SﮯTنشان می‌دهیم. زیر مجموعه T‌ای از S که با خود S متمایزند، به زیر مجموعه سره S موسومند. در این حالت می‌نویسیم SﮯT .

مجموعه تهی

مجموعه‌ای است که اصلا عنصری ندارد. معرفی این مجموعه برای گرد کردن گزاره‌ها و استدلالهای نظریه مجموعه‌ها مناسب به نظر رسیده است. درست همان طور که عدد 0 گزاره‌ها محاسبه‌های حساب را گرد می‌کند. نماد معمول مجموعه تهی Φ است.

خانواده یا دستگاه

مجموعه‌هایی که عنصرهای آن خود مجموعه‌اند، به خانواده یا دستگاه موسومند. به عنوان مثال ، یک قوم یا ملت ، مجموعه‌ای از اشخاص است و خود عنصری از خانواده اقوام یا ملتهاست. یکی از دستگاههای بسیار مهم ، مجموعه جمیع زیر مجموعه‌های یک مجموعه S است. این دستگاه به مجموعه توانی موسوم است که با (P(S نشان داده می‌شود.

اصول اساسی مشترک دستگاههای اصل موضوعی نظریه مجموعه‌ها

با توجه به اصل موضوعی مجموعه‌ها {به ازای هر yεN و xεN| x = y2} جمیع دستگاههای اصل موضوعی نظریه مجموعه‌ها ، که در نیمه قرن بیستم میلادی توسعه یافتند چهار اصل اساسی مشترک دارند.

اصل توسیع پذیری

اصل توسیع پذیری بر این است که اگر دو مجموعه دارای عنصرهای یکسان (یعنی دو مجموعه که با یک توسیع باشند)، همانندند.

اصل ساخت

اصل ساخت بر این است که انواع محدود خاصی از گزاره‌ها مجموعه‌ها را تعریف می‌کنند. یکی از محدودیتهای معمول این است که گزاره تنها شامل نمادهای شیئی ، نمادهای منطقی و نماد ε است.

اصل وجود مجموعه‌های نامتناهی

وجود مجموعه‌های نامتناهی بیانگر همین مطلب است. البته معنای نامتناهی را باید دقیق کنیم. مشکل است که این اصل با استفاده از ارجاع مستقیم علت را انگیزه موضوعی شود، اما بدون آن قسمت اعظم ریاضیات و علوم نظری از قبیل دیفرانسیل و انتگرال و مکانیک کلاسیک ، بی‌معنا خواهد شد. بی‌آن حتی نمی‌توان اساس مجموعه نظری اعداد طبیعی را بدست آورد.

اصل انتخاب

اگر s دستگاهی از مجموعه‌های ناتهی باشد، آن گاه مجموعه Aای موجود است که بطور دقیق یک عنصر مشترک با هر مجموعه S از S دارد.

اعمال اساسی مجموعه‌ها

  • اجتماع: اگر B,A دو مجموعه دلخواه باشند. اجتماع B,A برابر است با هم اعضایی که یا در A یا در B و یا در هر دو آنها باشند و آن را به صورت AUB نشان می‌دهیم.
  • اشتراک: اگر B,A دو مجموعه دلخواه باشند آنگاه اشتراک آنها برابر است با همه اعضایی که هم در A و هم در B هستند و آن را به صورت A∩B نشان می‌دهند.
  • تفاضل: اگر B,A دو مجموعه دلخواه باشند. آنگاه A-B یعنی مجموعه هم اعضایی که در A هستند ولی در B نیستند.
  • متمم: اگر S یک مجموعه باشد و A زیر مجموعه‌ای از آن باشد. آن متمم A مجموعه تمام اعضایی از S است که در A نباشد و آن را با Ā یا Á نشان می‌دهند.

خواص اعمال مجموعه‌ای

اعمال مجموعه‌ای که عبارتند از اجتماع ، اشتراک ، تفاضل و متمم دارای خواص زیرند.
  • دارای خاصیت جابجایی‌اند. AUB = BUA و A∩B = B∩A
  • شرکت پذیرند. (AUB)UC = AU(BUC)
  • توزیع پذیرند. (A∩(BUC) = (A∩B) U (A∩C و یا (AU(B∩C) = (AUB) ∩ (AUC
  • متمم متمم هر مجموعه مساوی خود آن مجموعه است.
  • اگر S یک مجموعه باشد انگاه اجتماع S با هر زیرمجموعه‌اش برابر S و اشتراک آنها برابر با آن زیر مجموعه است.
  • اشتراک هر مجموعه با متممش برابر تهی است و اجتماع آنها باهم برابر مجموعه عناصر (S) می‌باشد.
  • قوانین دمورگان (´AUB)´ = (A´∩B) و یا (´A∩B)´ = (A´UB)
  • تفاضل دو مجموعه برابر است با متمم اشتراک انها.
  • دو مجموعه را ناسازگار می‌گویند هرگاه اشتراک این دو مجموعه تهی باشد.


ساختار، تحول و فضا تعریف شده است؛ بصورت غیر رسمی تر، ممکن است بگویند مطالعه "اعداد و اشکال" است. در منظر صاحبان فکر، تحقیق بدیهیات ساختارهای مجرد تعریف شده، با استفاده از منطق و نماد سازی ریاضی می‌باشد؛ نظرات دیگر در فلسفه ریاضیات بیان شده است.


ساختارهای بخصوصی که در ریاضیات مورد تحقیق و بررسی قرار میگیرند اغلب در علوم طبیعی منشاء دارند، و بسیار عمومی در فیزیک، ولی ریاضیات ساختارهای دلایلی را نیز بررسی می نماید که بصورت خالص در مورد باطن ریاضی است، زیرا ریاضیات می توانند برای مثال، یک عمومیت متحد شده را برای زیر-میدانهای متعدد، یا ابزارهای مفید را برای محاسبات عمومی، فراهم نماید. در نهایت، ریاضیدانان بسیاری در مورد مطالبی که مطالعه می نمایند که منحصرا دلایل علمی محض داشته، ریاضیات را بصورت هنری برای پروراندن علم، صرف نظر از تجربی یا کاربردی، می نگرند.


مفاهیم و تاریخچه

  • علم ریاضیات
  • تاریخ ریاضیات
    • ریاضیدانان
    • فهرست ریاضیدانان ایرانی
    • فهرست ریاضیدانان مسلمان
    • نقش مسلمانان در پیشرفت ریاضی
    • نقش اروپا در پیشرفت ریاضیات